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ABSTRACT

..

Multivariate parametric distributions which are of

interest in reliability theory and life testing are discussed.

These include distributions with exponential, Weibull and

gamma univariate marginal distributions. Other distributions

of interest are the multivariate nonparametric distributions

whose marginals have increasing failure rates (IFR), increas-

ing failure rate averages (IFRA), are new better than used

(NBU) or new better than used in expectation (NBUE). Also

mentioned are univariate and multivariate processes which

have associated with them distributions in the various non-

parametric classes mentioned above.
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1. INTRODUCTION

In this paper we discuss the various multivariate para-

metric and nonparametric classes of distributions which are

of interest in reliability theory and life testing.

In Section 2 we concentrate on parametric distributions

whose univariate marginals are either exponential, Weibull

or gamma. We also discuss multivariate exponential extensions

which are distributions whose marginals are not generally

exponential but which were formulated utilizing concepts

based on univariate exponential distributions.

Multivariate nonparametric classes are discussed in

Section 3. These classes contain multivariate distributions

which have increasing failure rate or increasing failure rate

average or are new better than used or new better than used

in expectation. Many formulations have been given for each

of these classes, so that in this section only the most recent

or the most established formulations are discussed in detail.

The paper concludes with a discussion of univariate and

multivariate stochastic processes which are related to the

nonparametric classes to which Section 3 was devoted.

2. PARAMETRIC DISTRIBUTIONS

2.1 Introduction

The univariate parametric distributions which have

been most useful in reliability theory have been the exponen-



tial and Weibull distributions. Others which have been

of some importance are the logn.ormal and the gamma dis-

tributions. A history of the use of these distributions is

given in Chapter 1 of Barlow and Proschan (1965). An

introduction to these distributions, models from which they

arise, their properties and their use in reliability theory

are contained in Mann, Shafer and Singpurwalla (1974), and

in Barlow and Proschan (196*, 1975). See also Bain (19'8).

For more detailed expositions on these distributions ana

comprehensive bibliographies see Johnson and Kotz (19'2).

Multivariate parametric distributions which are ana-

logs of the univariate distributions previously mentioned

are still being developed. Unlike the multivariate normal

distribution, for most other multivariate distributions having

marginals of one type there are many possible dependence struc-

tures and consequently many multivariate versions. Several

multivariate exponential and related distributions, for

example, nave been developed. Many of these, along with

their properties, are given in Basu and Block (197o) and in

Block (1975). See also Johnson and Kotz (1972).

Z.2 Bivariate Exponential and Related Distributions

Most of the distributions treated in this section

have multivariate analogs, but for the purposes of clarity,

and exposition we will treat the bivariate case first. As

with all the distributions discussed we will say a distri-

bution is a multivariate if all of its univariate
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marginals are " ". Therefore a multivariate exponential

distribution will be one whose univariate marginals are

exponential. We will say a distribution is a multivariate

exponential extension if it is derived from properties of

a univariate exponential. The univariate marginals of such

a distribution will not necessarily be exponential.

Freund Distribution

Freund (1961) introduced one of the first bivariate

distributions based on a model involving the exponential

distribution. An interpretation of this model, given in

Block (1975), is the following. Consider a two component

system where the failure of one component affects the life-

time of the other component. Let Y1 and Y2 have independent
-1 -1

exponential distributions with means a 1 and a2 respectively

(the initial distributions of the unaffected component life-

times). Let Y,' and Y2 ' be independent of Y1 and Y2 and have

independent exponential distributions with means (a1')-1 and

(a2') -  (the distributions of the affected components).

Then it is easily shown that the distribution of the

component lifetimes

AccessionFr
(X, X2 ) =(Y 1, Y1 +Y2 ) if Y1 

< Y2 ' NTIS C .& .
2  D TIC T AS '

Y2 l ,Y2 ) if Y2 < Y1  Uiaxv3"",,.

has the survival function By
DAtr .
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Ol+ 2a2, exp(-(,a1 4a2-a2 )Xla 2 ' x 2 )

( 2-a 2 '
I( + exp(-(a 1+a2 )x2 ) if xI < x2

I 'l+L2-aL2
P.1 x 2  (1)Fx'2) OL ( 2  exp(-al'Xl-(a I+a 2-aI ' )x2)

S a+a -al,
1 2

'+( i -- exp-(a(l+a 2 )xl) if x I > x21 l+a 2-a I '

Properties of this distribution are given .in Johnson and

Kotz (1972).

Marshall and Olkmn and a Related Distribution

The distribution of Marshall and Olkmn (1967a) has

survival function

f(t1 ,t2 ) = P(T >tl, T2 >t2) = exp(-Xltl-X2 t2 -Xl2 max(tl,t2 ))

for tl>O, t2 >O,

where X., x2' 12 are nonnegative. This distribution is

derivable from 1) a fatal shock model, 2) a nonfatal .shock

model, and 3) a loss of memory model. For details on these

models and for properties of this important distribution see

Johnson and Kotz (1972) and Barlow and Proschan (1975). Esti-

mation and testing for this model have been carried out in

Bennis, Bain and Higgins (1972), Bhattacharya and Johnson

(1973) and Proschan and Sullo (1975). A more general version

of this distribution is given by Marshall and O1kmn (1967b).
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A recent characterization of this distribution due

to Block (1977a) is that (T1 ,T2 ) has this distribution if

and only if T1 and T2 are marginally exponential and

min(T1 ,T2 ) is exponential and independent of T1 -T2 . Other

characterizations of this distribution are given in Galambos

and Kotz (1978) and in Basu and Block (1975).

A distribution which is closely related to the

Marshall and Olkin distribution has been studied by Block

and Basu (1974). It is also closely related to the Freund

distribution and can be obtained from the interpretation

of Freund's model given previously where the affect of one
component on the other is a strainsi.e., l<ci, c2 c . For

1 ,a a2 2a

the choice a = X1+12 112' a2  + 2

and a 2 = X2+X12 in (1) where X1, X 212 are nonnegative and

Xl+X >0 , the distribution is obtained. It turns out that

this distribution is also derivable from a loss of memory

model similar to that of Marshall and Olkin. Furthermore

this distribution is the absolutely continuous part of the

Marshall and 01kin distribution. It should also be noted

that the lifetime of the two organ system of Gross, Clark

and Liu (1971) and also of the two organ subsystem of

Gross (1975) is a special case of the maximum lifetime of

this distribution. See the original paper for details,

estimation and other properties. Estimation and testing

have also been carried out by Mehrotra and Michalek (1976)

and by Gross and Lam (1979). The latter authors consider an
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application of this distribution to bivariate relapse

times for patients receiving different treatments.

Friday and Patil Distribution

Proschan and Sullo (1974) briefly suggest a model

which incorporates both the Marshall and Olkin and the

Freund distributions. Friday and Patil (1977) pursue the

idea of a distribution containing these two distributions

still further. They develop a similar although more general

distribution than that of Proschan and Sullo which is de-

rivable from (1) a threshold model, (2) a gestation model

and (3) a warmup model. The survival function can be

written as

P~xl x aTF (l' x(2)(l,2) A a0A ,2) + (I-a0) Ps(xl 'x2)(2

where PA(xl,x2) is given by (1), i.e. the Freund distri-

bution, and

Ps(x,x 2) exp(-(al+a2 )max(xl,x2 )) if xl>O, x2 'O

It is clear that for = 1 equation (2) gives the Freund dis-

tribution. It should be noticed that this equation is of

the form of the Marshall and Olkin distribution (see

Theorem 1.5, Chapter 5 of Barlow and Proschan (1975)). The
-l

choice of parameters a0 = (Xl+X 2 )("l+ 2 +\ 1 2 ) where N1NO.

X2>O and X12>0 and al, all, a2  a2 ' as chosen for the Block

and Basu distribution in a previous section yields the

Marshall and Olkin distribution.

Also contained in the paper of rriday and Patil is
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a nice summary of the relations among the various dis-

tributions just discussed. Also discussed are trans-

formations from independence for the distribution and

computer generation and efficiency for this distribution.

Downton Distribution

This distribution is a special case of a classical

bivariate gamma distribution due to Wicksell and to Kibble.

See Krishnaiah and Rao (1961) for a discussion of this gamma

distribution and references. Downton (1970) developed a

model which gave rise to this bivariate exponential distri-

bution and proposed its use in the setting of reliability

theory.

An interpretation of this model, which is due to

Arnold (1975b) is presented here. Consider a two component

system where the components are each subjected to nonfatal

shocks which occur according to two independent Poisson

processes. Assume the processes have rates (1-o)u I and

-1
(l-P)U 2  respectively where 0<<i, O<VI, O<V 2 . Let

{Xi i=1,2 represent interarrival times for each ofij J=l',

the two processes. Assume that each component fails after

N and N2 shocks respectively where NI N2 N is a geometric

random variable with parameter I-o (i.e. P{Nn=n(-o),

n-1, 2 .... The times to failure of the two components

are then given by

N1 N 2 )
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By conditioning on N and using characteristic functions

it is easily seen that (YIY 2 ) has density

f(yly2)- e o( )II2 y1 y2  (4)

1-P I-p

for y1 >0, Y 2 >0

where 10 is the modified Bessel function of the first

kind of order 0. This is the bivariate exponential distri-

bution given by (2.10) of Downton (1970).

Downton also shows that if instead of N1 =N2 =N in his

derivation (and equivalently in the above derivation) we

let (N1 ,N2 ) assume various other bivariate geometric distri-

butions a distribution of the same form as (4) is obtained.

As mentioned initially the above distribution can be

obtained as the special case of a particular bivariate

gamma distribution. This distribution is obtained as follows.

Let (XI,YI), (X2 ,Y2 )...,(Xn ,Y ) be iic bivariate standard

normal distributions with correlation P. Then

n 2 n 2

has a correlated bivariate gamma (chi-square) distribution.

For the case n-2, a distribution of the form (4) is obtained.

Hawkes Distribution

The bivariate exponential distribution of Hawkes (1972)

is obtained from the same model as that of Downton. The
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only difference is in the choice of the bivariate geometric

distribution (NIN 2 ). This bivariate geometric distribution

which was derived by Hawkes was derived independently by

Esary and Marshall (1973) and by Arnold (1975a). The model

given here is from the Esary and Marshall paper.

Consider two devices which receive nonfatal shocks

at discrete time periods labeled by the positive integers.

The occurrence of these shocks is independent and at each

cycle there is a probability P1 1 that both devices survive

the shocks, probability P1 0 that the first survives but

the second does not, probability P0 1 that the second survives

and the first does not and P0 0  that both devices fail. Then

letting Ni be the number of shocks to failure for devices

i=1,2, and conditioning on the occurrence of the first cycle.

as in Arnold (1975b), it is easily seen that the characteristic

function (tl,t 2 ) satisfies

it +it2
0 (t1 ,t2 ) = e (P0 0 +P0 1 (0,t2 )+Pl0 P(t1 ,0) +p11 (tl,t 2 )).(5)

This is essentially the characteristic function equation of

Paulson and Uppuluri (1972b) and is easily solved (i.e.

take tl=0 and solve for (0,t2 ), then for t(tl,0) similarly,

then for O(t 1,t2)). The bivariate distribution which has

this characteristic function is given by

n n2-n
P(Nl1>nl'N 2>n2 ) = 1if n21n,.

p1 1 (PI0 +p1 1 ) if n l
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Using this listribution in the model of Downton, Hawkes

in slightly different notation (i.e. pij=Pji for all

i=0,1, j=0,1) obtains his distribution. By taking

P0L= P10 , 0 it can be seen that NI£N 2 and so the Downton

distribution is a special case of Hawkes. The resulting

transform is given in Hawkes (1972) along with some

properties.

Paulson Distribution

Paulson (1973) derives a bivariate exponential dis-

tribution through acharacteristic function equation. This

equation is the generalization of a one dimensional character-

istic function equation which arises from a compartment

model (see Paulson and Uppuluri (1972a)). A generalization

of the compartment model also leads to the bivariate equation.

The bivariate equation is given by

(tl't 2) = P(tl't 2) P00 P01@(0,t2)+Pl0@(tl,0)+Pll'(tllt2)- ,

where p00 +p0 1+pl0 +pll =-, pl0+pll<, p01 +pll< 1 and -(tl It2 )

(1-iel1t 1)(l-ie 2t2 )-l-. Then solving for (tl,t 2 ) in the

above equation leads to the bivariate characteristic function

(tllt 2 ) = 11-ie1 t1 )(l-ie 2 t 2 )-P 1 1]-l5oo+P1 o(l-i 1 tl
)-i

+ P01(l-i"2t2)-l

l)--

where U1 e=(P0 0+P01  and u2  e2 (P00+pl0 )

It can be shown that this is exactly the form of the

Hawkes distribution and henceforth we will refer to this

distribution as the Hawkes-Paulson distribution. Fol-
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properties see Paulson (1973) and Hawkes (1972).

Arnold Classes

In describing these classes Arnold uses what he

calls a generalized multivariate geometric distribution.

It is easily seen that this is a reparametrized version

of (6) in the bivariate case. Thus we let (NI,N 2 ) be the

bivariate distribution given by (6). Then Arnold's bi-

variate classes E (2) consist of the random variablesn
N 1  N 2

(YIOY 2) =(~ X i l I~l X i 2 )  _

where (Xil,Xi2 ) for i=1,2,... are bivariate iid rvs with

distributions in (2) for n>l and where c 2)consists ofn-l

(X,X) where X is exponential. Clearly the marginals are

exponential for all the classes. It also is not hard to

show that e 2 ) contains the pair of independent exponentials

(see Arnold (1975a)) and also contains the Marshall and

Olkin distribution (see the nonfatal shock model discussed

in Barlow and Proschan (1975)). Furthermore, it follows

from the derivations given here of the Downton and the Hawkes

distributions that these are contained in ci2) since e 2)
2 1

contains the independent exponentials.

The Arnold classes of distributions have been described

using the characteristic function equation approach of

Paulson and Uppuluri (1972b) and Paulson (1973) in Block,

Paulson and Kohberger (1975). In this latter paper the

characteristic function equation approach has been used to
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derive properties of the distributions in this class,

including descriptions of the standard distributions in

the class, infinite divisibility of the distributions,

moment properties and asymptotic properties. These results

are summarized, without proof, in Block (1977b), in which

it is also shown how the distributions in the class lead

to multivariate shock models of the type studied in the

univariate case by Esary, Marshall, and Proschan (1973).

2.3. Multivariate Exponential and Related Distributions

Most of the bivariate models in the preceding section

have multivariate (n>3) analogs. In general the ideas are

similar to the bivariate case, but the notational complexity

is greatly increased. Without giving many details, we will

briefly discuss the multivariate situation.

The Freund distribution has been generalized to the

multivariate case by Weinman (1966) but only for identically

distributed marginals. See Johnson and Kotz (1972) for

details concerning this distribution. Block (1975) has

considered a generalization of the Freund distribution for

the case when the marginals need not be identically distributed

as well as generalizing the Block and Basu (1974) and the

Proschan and Sullo (1974) models in the same paper.

Generalization of the Downton (1970), Hawkes (1972)

and Paulson (1973) distributions implicitly exist within the

framework of the general multivariate gamma distribution of

Krishnamoorthy and Parthasarathy (1951) (see also Krishnaiah

and Rao (1961) and Krishnaiah (1977))and also within the frame-
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work of the Arnold classes. A specific parametric form

has been given in Hsu, Shaw and Tyan (1977).

Recently a multivariate exponential distribution

has been proposed by Bryant (1979) which arises in the

context of certain cycling systems.

2.4. Multivariate Gamma Distributions

Unlike multivariate exponential distributions multi-

variate gamna distributions have a long history and many

of their distributional properties have been discussed in

the literature. A good reference for these distributions

and their properties is Johnson and Kotz (1972).

Krishnaiah (1977) has specifically discussed multi-

variate gamma distributions in a reliability setting. In

that paper, Krishnaiah discusses the distributions of order

statistics and linear combinations of variables from

various multivariate gamma distributions and their use in

the area of simultaneous test procedures. Furthermore

he discusses multivariate distributions arising from mix-

tures of distributions of type similar to those encountered

in the models of Downton (1970), Hawkes (1972), Arnold (1975)

and Block (1977).

2.5. Multivariate Weibull Distributions

Multivariate Weibull distributions were discussed by

Marshall and Olkin (1967a) in the context of their dis-

cussion on multivariate exponential distributions. Speci-

fically they define a multivariate Weibull distribution b-
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assuming (T1 ,... ,Tn ) has their multivariate exponential

distribution and then considering

I/a T 1/a2  1/an)
T1',a....T)= (T 1  T2  Tn (7)

where a.>0 for i=l,...,n which then has univariate Weibull

marginal distributions. This procedure certainly could be

extended for any multivariate exponential distribution.

Moeschberger (1974) has studied bivariate Weibull distri-

butions of this form, deriving properties and discussing

maximum likelihood expectation.

David (1974) and Lee and Thompson (1974) have intro-

duced multivariate Weibull distributions of the form (Ti,...,

T ) where Ti =min(U J: iEJ) , 0YJC(l,...,n}, P U >xln_ X oj

=e , x>O and U are independent. These distributions

need not have Weibull marginals if the a , are not all equal.

Arnold (1967) has also considered Weibull distributions of

a similar form, but his restriction that they belong to an

additive family forces aj= a for all J. Thus these distri-

butions are also of the form (7).

Recently Spurrier and Weier (1979) have modified the

Freund model using Weibull instead of exponential distributions.

3. NONPARAMETRIC CLASSES OF DISTRIBUTIONS

Various classes of distributions which describe the

way in which component lifetimes wear out have been dis-

cussed by many authors. The most important of these classes

are 1) the increasing failure rate (IFR) class, 2) the increas-
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ing failure rate average (IFRA.) class, 3) the new better

than used (NBU) class, and 4) the new better than used in

expectation (NBUE) class. These have been extensively

discussed in the literature. The case where the lifetimes

are independent (which we call the univariate case) are

discussed in the book of Barlow and Proschan (1975) and

also in the expository paper of Block and Savits (1980).

The case where the components are dependent (called the

multivariate case) has also been discussed in the latter paper.

but since the development in the field is so rapid many

new results have appeared since this last mentioned paper.

We give a brief introduction to the univariate case, some

background in the multivariate case and then outline the

most recent developments.

3.1. Univariate Classes

The most prominent of the nonparametric classes used

in reliability theory is the class of distributions which

have increasing failure rate. See Block and Savits (1980)

for background and motivation for this class In the

following we let T be a random variable with distribution

function P(x) such that F(O)- 0 (the usual assumption is

r(0-)- O, but for the purpose of exposition we use the

above) having density f(x) (if it exists). We say F has

increasing failure rate (IFR) if the survival function

N(x)- P{T>x} satisfies

mbb~mmbm
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P(x+t) decreases in x>O for t>O (8)
P(x)

or equivalently (if the density exists)

f(x)
r(x) - - increases in x>O.

P(x)

A distribution F has increasing failure rate average

(IFRA) if

P(at) P(t) for all O<a<l and all t>O

or equivalently (if the density exists)

t-I (I r(x)dx) increases in t>O.

Another equivalent formulation (see Block and Savits (1976))

is

fjh'(x/x)dF(x) , (I'h(x)dF(x). ' for all O<al (9)

and all nonnegative increasing functions h.

A distribution F is new better than used (MEL') if

P(x+t) < P(x)P(t) for ill x-O, t>O. (10)

A distribution F is new better than u:ied in expectation

(UE) if

.tP(x)dx < Ju(t) for all t-O

where u" o(x)dx is finite.

Dual versions for all the above definitions exist b"

reversing the monotonicity or the inequality. Since the
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treatment of these concepts is similar we shall omit it.

3.2. Multivariate Classes

As in the parametric case many multivariate exten-

sious are possible. Many versions of multivariate IFR,

IFRA, NBU and NBUE have been proposed. Rbr various IFR and

IFRA extensions see Marshall (1974) and Esary and Marshall

(1979) respectively. In the following we discuss the

particular multivariate IFR and IFRA notations which at

this time appear to be the most important ones. Various

multivariate concepts *of NBU and NBUE are given in Block

and Savits (1980). As of yet, no clear favorites have

emerged but there have been several recent papers on this

subject. We shall attempt to describe some of this devel-

opment. In the following we let F be the multivariate dis-

tribution of the random variable T- (T1 .... PTn) which is

assumed to satisfy T(O) - F(O,...,O)- 1 where we let P(t)

- P(tl,...,t) = P(TI>ti, ... Tn tn)•

The distribution F is said to be MIFR if

f(x+tl)
- - decreases in x O for all t>O (11)P(x)

where 1 - (1,...,1).

This generalizes (8) and has many important properties

(see Block and Savits (1980)). Various variants cf this

condition are possible (see Marshall (1979)) but the above

version best captures the intuitive idea of the model that
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components in the same environment run for the same

time (i.e. t1 - t2 - ... - tn  t) but may be of different

ages (i.e. x- (xI .... xa)). This concept also satisfies

many of the important basic properties that one would

expect of such a multivariate generalization. See Chapter

5 of Barlow and Proschan (1975) for the statements and

proofs of these properties.

The concept of multivariate IFktA which we now dis-

cuss is a generalization of (9). We say F is MIFRA if

E'[h(T)j < E[h'(T/3 for all O<a<j

and for all continuous nonnegative increasing functions

h. Recall that F is the df of T. A distribution satisfying

this condition has all of the properties one would expect

of a generalization of the univariate IFRA concept. See

Block and Savits ([979b).

ksary and Marshall (1979) have proposed various other

concepts of mutivariate IFRA, many of them having intuitive

appeal. Unfortunately all of them fail to satisfy at least

one of the basic properties which the MIFRA distributions

possess. This is demonstrated in Block and Savits ([978b).

Block and Savits (I980) describe a wide variety of

possible definitions for both the concepts of multivariate

NBU and multivariate NBUE. Some of these were definitions

given by Buchanan and Singpurwalla (1977), others were based

on the multivariate IFRA concepts of Esary and Marshall



and still others were based on Laplace transform character-

izations of NBU and NBUE which appeared in Block and Savits

(1979a) and on other characterizations of NBU and NBUE which

appeared in Block and Savits (197da). At the time the paper

of Block and Savits (L980) was written the only thing that was

clear was that many multivariate N1U and NBUE concepts were

possible. Since then some order has begun to appear in

this field.

Marshall and Shaked (19'19) introduce a compelling

concept of N8U. This definition is that a random vector

T(T,. n ) is multivariate NHU if

P{T E (a+B)A} < P{T e aA}P{T E BA} for all a>0, B>0 (12)

and all upper (or increasing.) sets A in Rn. (A is an upper

set if xE A and x<y imply y e A). It is clear that this is

a general version of the type of definition studied by

Buchanan and Singpurwalla (1V77) and very recently by

Ghosh and Ebrahimi (19O), i.e.

P(x+y) < P(x) f(y) for all x>O and y>O (13)

where x and y are perhaps further constrained. Furthermore

Marshall and Shaked have four alternate characterizations

of (12). Several of these involve the concept that T is

multivariate N43U if and only if g(T) is univariate NbU for

all g of a certain type. Many other properties are proven.

The classes of multivariate NRU and NBUE introduced

by Buchanan and Singpurwalla (IV77), where the NBU distributions
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are defined by properties which are cases of (13) and the

NBUE distributions are integrated versions of these, have

been further studied by Ghosh and Ebrahimi (1980). These

authors study the relationships among these definitions

(and some variants of them), their properties and also

demonstrate how some multivariate shock models give rise

to them. They also make connections with some of the

IFRA concepts. Griffith (1979) has also considered multi-

variate shock models leading to some of these concepts.

A recent paper by EI-Neweihi, Proschan and Sethuraman

(1980) discuss the multivariate class which arises as

minimums of independent univariate NBU random variables.

These distributions arise in the same way as the Marshall

and Oikin distribution and also in the same way as one of

the definitions of multivariate IFRA (i.e. Condition C)

of Esary and Marshall (1979). These have properties similar

to those of distributions with exponential minimums studied

by Esary and Marshall (1979). Various relationships and

properties are given. One of them is given that T=(TI,...,Tn)

has this NBU property then it has the Marshall and o1kin

distribution if and only if, for example, min T1 is exponen-
1<i<n

tial. Relationships are given between the present de-

finition and various other definitions.

3.3 Processes

The concept of a one dimensional stochastic process

being of a type described by one of the four classes has
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been proposed by Ross (i979). Essentially he has discussed

processes which are decreasing (or increasing) and whose

first entry times into a state are all IFRA. For these

processes, which he calls IFRA processes, he proves a clo-

sure theorem. He also studies NBU processes. NBU

processes are also considered by El-Neweihi, Proschan

and Sethuraman (198) who also prove a closure theorem.

Extensions of Ross's ideas to multivariate processes

have been accomplished by Block and Savits (19 79c). These

authors study several types of multivariate processes

having IFRA type properties.

Hecently Arjas (1979) has considered IFR processes.

He has discussed both the univariate and multivariate cases.
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